Good Il Evil: Defending Infrastructure at Scale with
Anomaly and Classification Based Network
Intrusion Detection

August, 2021

Philippe Partarrieu*
M.Sc. Security and Network Engineering
University of Amsterdam
philippe.partarrieu@os3.nl

Giovanni Silenof
g.sileno@uva.nl

*

Abstract— We develop and evaluate a pipeline for extracting
and analysing observations from network traffic, using state
of the art machine learning and deep learning algorithms to
recognise malicious patterns in network communication, without
the need for static detection rules. The evaluation is conducted
on the CIC-IDS-2018 dataset, a modern and large scale scenario
that includes multiple common attack classes inside a multi-
department corporate network infrastructure hosted on AWS.
Our experiments seek to evaluate the detection performance of
various algorithms, as well as the impact of different model
parameters, to determine which delivers the highest value for
security threat analysts. For this purpose, we compare the results
of binary classification, to more fine grained multi-class attack
classification, and investigate the possibility of knowledge transfer
between network topologies as well as limitations for real-
world deployment of anomaly- and classification-based network
intrusion detection systems.

Index Terms—network security, machine learning, artificial
intelligence, data science, intrusion detection, deep learning

I. INTRODUCTION

Computer networks are frequently attacked with new or
previously unseen malware in order to steal information or
cause financial damage. Defending effectively against these
has become a difficult task because the current signature based
detection mechanism only detects known malicious programs
or behaviours [1]. Even if a signature exists for a known
strain of malware, obfuscation techniques can be used to avoid
detection, either by making changes to the code base, or by
updating key attack characteristics and used infrastructure. In
addition to this problem, the signature databases are growing,
and need to be kept up-to-date in order to protect against latest
threats.

Anomaly detection attempts to solve the problem of de-
tecting previously unknown attack variations, by modelling
the normal behaviour of clients on a computer network and

Joao Novais Marques'
joao.novaismarques@kpn.com

Philipp Mieden*
M.Sc. Security and Network Engineering
University of Amsterdam
philipp.mieden@os3.nl

Jordi Scharloof
jordi.scharloo@kpn.com

student T supervisor

alerting an analyst of any deviations from these patterns.
Machine learning has been an active area of research over
the past 20 years, and is known to work well for many similar
data science problems. As a result, nowadays there are many
different algorithms and frameworks to choose from.

Machine Learning (ML) algorithms range from classical
fingerprinting and frequency based observations, over decision
tree based methods, to Deep Learning algorithms and the use
of Deep Neural Network (DNN), that mimic the behaviour of
the human brain in order to make a classification based on
learned attributes and data characteristics.

A core challenge for the application of anomaly based
detection methods, is the selection, collection and extraction of
feature vectors that are fed into the classification algorithms.
This process not only has to be secure, as it is parsing untrusted
and potentially malicious input, but also efficient in terms of
computational resources, in order to satisfy real time analysis
requirements and handle the large volume of traffic in modern
networks.

A distinction has to be made between two different method-
ologies for training a [MI] classification algorithm. In super-
vised learning, an algorithm is fed input-output pairs and
learns a function that maps the input to the output. In unsuper-
vised learning the algorithm learns patterns in the input even
though no explicit feedback is supplied. The latter is more
generic and less specific to the target environment, whereas
the supervised approach can offer a higher accuracy and fewer
false positives [2].

II. BACKGROUND & RELATED WORK

A. Network Intrusion Detection Systems

Anomaly-based Intrusion Detection Systems, especially un-
supervised learning algorithms, have been shown to be highly

capable at detecting previously unknown attacks such as zero-
days, obfuscated attacks or variations of known malicious
patterns [3]].

In 2016, Veeramachaneni et al. designed an anomaly detec-
tion system that employs a security expert to classify the alerts
raised by an outlier detection model. The classified data is then
fed into a supervised learning algorithm. This combination
of supervised and unsupervised learning with an analyst in
the loop allows the system to detect more anomalies with
a higher sensitivity but the training takes time and human
resources. The study shows that the system may take up to
3 months to outperform a simple outlier detection model. We
argue that such long convergence time could be a problem for
the requirements of modern network infrastructure, due to its
fast paced change over time.

B. Outlier Detection Algorithms

There are many anomaly detection algorithms e.g. K-
Nearest Neighbours, Support Vector Machine, Isolation
Forests. The applicability of each will vary between domains
and we will only discuss research that investigates outlier de-
tection algorithms specifically for network intrusion detection.

In 2003, Lazarevic et al. [4] found that the Local Outlier
Factor (LOE) was the most promising at detecting network in-
trusions compared to a Neural Network (NNJ), a Mahalanobis,
and an Support Vector Machine based approach. In
2013, Emmott et al. [5] performed a comparative study and
found that Isolation Forests, an algorithm discovered in 2008
[6], was the top performer at detecting anomalies toe-to-toe
with Ensemble Gaussian Mixture Model (EGMM)), [LOH and

Isolation Forest is a very interesting choice since it is the
best performing model in terms of resources: it has a linear
time complexity and low memory requirements. However
Isolation Forests suffers from anomaly masking, which refers
to the problem that too many anomalies are concealing their
own presence. Indeed the algorithm relies on the intuition
that anomalies are susceptible to isolation under random
partitioning but this assumption fails when anomaly clusters
are large and dense [6].

This raises an interesting insight in network intrusion
detection and for traffic analysis in general: malicious
behaviour isn’t necessarily anomalous e.g. Denial of Service
attacks against intentionally exposed services, where
a public resource is requested frequently enough to exhaust
the capacity of the underlying infrastructure. Furthermore
anomalies aren’t necessarily malicious, but might still be
worth reporting for the purpose of defect detection e.g.
system malfunctions due to misconfigurations.

C. Deep Learning

Although Deep Neural Networks have been making sig-
nificant improvements in recent years [7|] [8] and can score
high results for classification tasks, the black-box nature of
these algorithms makes it hard to justify why an anomaly has

been flagged as such [9]. Deep learning models show great
performance as long as the data seen during tests is similar
to the training data. Effects of substantially different patterns
on the prediction accuracy, are hard to estimate and require
manual testing. This poses a problem for the application of
deep learning to network security monitoring.

It has been shown that a mismatch in distribution will lead
deep learning models to give high confidence predictions on
anomalies [10]], meaning that the algorithm is easily fooled
when the ratio of benign to malicious events changes sub-
stantially. In 2019, Hendrycks et al. [8] try to address this
problem in the context of natural language processing and
vision tasks, by exposing a deep learning model to outliers.
They conclude that outlier exposure significantly improved the
detection performance of the tested classifiers.

Literature by Mukkamala et al. [11] has shown that an
ensemble approach, combining various algorithms (NN}
and Multivariate Adaptive Regression Splines) is superior in
terms of classification accuracy over the individual approach.
The intuition behind these results stems from the fact that
malicious network behaviour may exhibit different statistical
properties depending on the attack class. Each model has
individual strengths and weaknesses and may be better suited
at detecting a given attack class but performs worse at another.
The ensemble approach shows that these models can work
synergistically.

In 2018, Mirsky et al. [12]] showed that Kitsune, an ensem-
ble of auto-encoders, performed better than to 2 individual
offline algorithms, Isolation Forest and Gaussian Mixture
Model (GMM), and 2 individual online algorithms, pcStream
and incremental

D. Datasets

Arguably one of the most important variables when it
comes to training Machine Learning algorithms is the dataset.
Academic research in anomaly detection is known to suffer
from a lack of realistic and publicly available datasets [J5].
Indeed, synthetic datasets don’t exhibit real-world validity and
therefore it becomes hard to decide whether the algorithm
trained on such data works well in real-world settings. Many
real-world datasets are kept private due to privacy concerns
and the few public ones are often heavily redacted as stated
by Sharafaldin et al. [13].

Emmott et al. [5] propose a systematic benchmarking
methodology for real data datasets pertaining to anomaly
detection by measuring the data according to three dimensions:
point difficulty, relative frequency of anomalies, and clustered-
ness. They are able to show that these properties are crucial in
influencing the behaviour of anomaly detection algorithms.

III. PROBLEM AND RESEARCH GAP

Signatures are often using information that can easily be
changed by the authors of the malicious code. For example,
many detection rules for the signature based intrusion de-
tection systems Snort and Suricata, rely on specific domain
names or IP addresses of computer infrastructure that is

known to be used by criminals. However, these identifiers
can be easily changed or the command and control server
can be moved to a different hosting provider, and the rule
is no longer effective in detecting the threat. Detection on
the endpoints itself faces a similar problem, as the use of
certain bit patterns or symbol names in binary files is not
effective at preventing attackers with access to the source code
from making modifications that will evade detection, by using
binary obfuscation techniques.

As complete security of endpoint systems cannot be guar-
anteed in practice, due to the aforementioned reasons, network
security operations must take infections and incidents into
account and develop mitigations and detection mechanisms. A
key factor for the successful contention of malicious activity
is time: a case study from Mandiant published in 2012 showed
that the median time from the start of an intrusion to the
incident response is over 240 days [14]. Damage can poten-
tially be prevented thanks to timely detection and response
by an automated system. Flow collection for high throughput
networks is often sampled, otherwise the hardware would not
support the capture process [15]]. This potentially introduces
a gap in visibility, as attack packets might be missed. Some
attacks might use techniques that are not immediately obvious
to a human analyst, for example fragmentation attacks, but
cause patterns in the data points that an algorithm can detect.
The implementation of this however, is a resource intensive
task that requires stream reassembly, and can lead to denial of
service attacks if implemented incorrectly [16].

An effective way to get alerted about suspicious activity on
endpoints is to analyse the network traffic generated by those
hosts, as malware in a majority of cases contacts a command
and control server, to receive further commands or upload
gathered data or encryption keys, in order to provide value for
an attacker. There are exceptions to this that depend on the
nature of the attack: consider malware that only aims to wipe
the endpoints and infection via USB drive. In that case, no
network communication is required for success of the mission,
and as a consequence, detecting such attacks is out of scope
for this project. We focus on attacks that leave traces on the
network exclusively.

Detecting network attacks comes with the challenge of
detecting rare events. This poses a problem for commonly
used algorithms in the data science world, as those expect
a similar distribution of the classes used to describe the
data. To deal with this limitation, several approaches are
available. Manual investigation of network traffic pattern is
extremely time intensive, automated solutions that apply pre-
selection for the events the analyst will be presented, can
potentially drastically reduce the workload imposed on the
human operator.

The choice of learning strategy comes with limitations for
the operational phase, and for each algorithm, there are many
different configurations and possible optimisations. Which al-
gorithm, configuration and feature selection works best for the
detection of attacks in computer networks, is still an active area
of research with no ultimate solution yet in sight. Furthermore,

academic experiments on machine learning based network in-
trusion detection often make use of expensive supercomputers,
or cloud services with high performance configurations, that
are out of reach for other researchers. To address this, our
experiments are conducted entirely on commodity hardware.
Another problem with the current state of research in the
area is reproducibility: many publications do not include
instructions or code to allow for independent verification of
the presented results within reasonable time. Experiments are
often restricted to a single domain of algorithms, whereas
a comparison within those might provide additional value.
Lastly, some work in the field still makes use of outdated
datasets, for example the NSL-KDD dataset [17]], which is
based on the over 20 years old KDD-99 dataset, and as a
consequence no longer representative for real-world traffic. We
therefore seek to evaluate the state of the art algorithms and
compare their performance on a modern dataset, while creating
an open source test bed that can be used in future experiments
and for the reproduction of our results.

IV. RESEARCH QUESTION

We are interested in evaluating state of the art open source
solutions to classify malicious behaviour in computer networks
on a modern large scale dataset.

During this research project, we intend to answer the follow-
ing questions:

1) Which features prove the most useful for the detec-
tion task?

2) What performance can be achieved with the pro-
posed implementation with regard to throughput and
hardware requirements?

3) Which algorithms are best suited for the task of
anomaly detection in computer networks?

V. METHODOLOGY
A. Dataset

The CIC-IDS-2018 dataset was published by Sharafaldin
et al. [[13] and to our knowledge is the most extensive
publicly available network intrusion detection dataset to date.
It includes a variety of attacks, ranging from denial of service
and distributed variant Distributed Denial of Service
to infiltration, injection and bruteforce attacks. It comes as a set
of raw packet captures and provides uni-directional network
flow data with many statistical features, and with attack labels,
intended to be used by [MI] algorithms. Recent attack method-
ologies are carried out against a five department corporate
infrastructure hosted on Amazon Web Services (AWS), that
is connected via a network infrastructure provided by 30
servers, including in-house mail, file server and Windows
active directory services. A large scale attack operation is
simulated from 50 dedicated machines to conduct attacks
against the target services and endpoints.

B. Dataset Limitations

This section lists issues we encountered with the dataset and
makes suggestions for possible improvements.

1) Incomplete Network Flow Data

Provided network flow records where missing address
information, namely the FlowID, SrcIP, DstIP and the
SrcPort. After contacting the dataset authors we received the
full enriched network flow dataset.

2) Non Reproducible Labelling

The labelling tool or strategy used has not been open
sourced by the CIC-IDS-2018 dataset authors, and as such
cannot be reproduced. Furthermore we noticed that the paper
states that the port information during attacks was used for
the labelling effort, but no port information is provided in the
table that lists the attacks.

3) Incomplete Packet Captures

Packet captures for Thursday-15-02-2018 were missing
attack traffic and seem to have been cut short, as the traffic
ends at 9am, as a consequence no attack labels are present
in the connection audit records for this day. However the
provided network flow files do contain attacks on this day
and could be used in our experiments. The affected day is
marked in the result tables.

4) Absence of Normal Days

No days that contain only normal traffic have been
provided. This would have been useful for validation
purposes to measure the amount of false predictions during
days with exclusively benign activity.

5) Dataset Imbalance

The CIC-IDS-2018 dataset contains an imbalanced ratio
of attack traffic to normal traffic, which impacts the choice
of metrics for evaluation. This ratio varies from 5-20% for
the provided network flow data, and between 1-5% for the
connection audit records extracted by our tooling, as these
aggregate the flows in both directions and ignore sub-flows
triggered via RST or FIN flags.

Behaviour of anomaly detection algorithms varies depend-
ing on the ratio of anomalies. If anomalies are rare, algorithms
that fit a model to “normal” samples may do well. Inversely
if anomalies are common, algorithms that fit a model to
malicious samples may do well.

Different strategies exist to deal with dataset imbalance:

o Class weights are calculated based on the ratio of the
positive to the negative class, and force the algorithm
to pay more attention to underrepresented classes. Each
class receives a value for its weight.

« Oversampling consists in selectively picking samples of
underrepresented classes and duplicating them, in order
to increase their share in the dataset.

o Outlier exposure as described in [§]], training a deep
learning model against a dataset of outliers leads to better
detection of unseen anomalies.

C. Dataset Exploration

Each of the six different types of attacks in the dataset has
different characteristics. The following sections will shortly
describe the expected characteristics for each of those attacks
and explore advanced variations for some attacks that could
be used by an attacker to complicate detection, or evade static
rules.

1) Botnet Activity

Infected workstations send periodic beacons or exfiltrated
data to the command and control server of the attacker, in this
case screenshots from the victim machines are continuously
uploaded to a service from the attacker. This creates a static
communication pattern from the inside network to the outside
world, possibly also with a static data transfer size. In the CIC
dataset, a fixed dimension screenshot is repeatedly transferred
to a command and control server by the infected machines.
Advanced implementations of such an attack might introduce
random jitter to make detection harder, or vary the payload
size with each transfer.

2) Infiltration

User machines start to behave abnormally after initial in-
fection. Abnormal activity might include network scanning
for reconnaissance, data exfiltration or download of further
malware. This can happen potentially from a legitimate service
like for example Dropbox and over an encrypted TLS connec-
tion. Additionally an attacker can expand his presence in the
compromised network using lateral movement. After success-
ful infiltration, data exfiltration can potentially happen very
slowly or tunnelled in another protocol like Internet Control
Message Protocol or Domain Name Service (DNS),
besides the use of an encrypted Transport Layer Security
(TLS) connection over an allowed port like 443, for Secure
Hypertext Transfer Protocol (HTIPS) traffic. An interesting
indicator are the connections from the attacker machine that
are used to control the victim machine during further malicious
activity, in this case using a meterpreter reverse shell, over
an unencrypted Transport Control Protocol connection.
Network scanning creates a similar static pattern of a host that
contacts another host on many different ports, potentially over
a longer period of time, to avoid detection. Simple scanning
configurations might probe ports in sequential order, while
configurations that try to be more stealthy could randomise
this order.

3) Bruteforce

Multiple attempts to access a resource in a short period
of time, from a single or multiple hosts. A small amount of
data is sent, as authentication data like credentials are usually
very small, or in case of using certificates for authentication
has a fixed length. In case the features include the status
code for authentication operations, a series of authentication
error codes can be observed. Several open source tools exist
for launching dictionary attacks against exposed services that
support authentication [[18]. We expect that it can pose a
challenge for an algorithm to determine whether it is a program
trying to brute force access to an account, or the legitimate
user that made a typo when entering his password, especially

when only a low number of attempts are used, in combination
with randomised delay between authentication attempts.

4) Denial of Service

This attack type seeks to disrupt the availability of a system,
either by generating a high frequency of incoming requests,
from a single, or many different hosts in case of the distributed
variant, or by crashing the system entirely. A pattern that can
be observed is that a certain resource, for example a public
facing service, is more frequently requested than usual. This
however might not always be malicious, consider an online
shop that launches a sale, and as a consequence expects a
high amount of visitors over a short time frame. In some
cases, even a single packet can be enough to crash an entire
application and render it unusable for its users [19]. Due
to the statistical patterns, especially those in resource access
frequency, we consider these attacks to be detected with a
rather high detection rate.

5) Injection

Injection attacks often allow for the execution of malicious
code, and some can be used to gain remote control over a
target [[19]. The dataset contains examples of SQL injections,
which lead to the execution of attacker controlled queries on a
SQL database backend, enabling data theft or destruction. The
SQL backend communicates over a [TCP| connection, and as
such the traffic and exchanged amount of data can be observed.
The database connection might be kept open and reused for
multiple queries.

D. Feature Extraction

In order to determine which features are the most valuable
for the task of network intrusion detection, we extended the
connection audit records provided by the Netcap framework
[20]. A key goal for the feature extractor is performance,
as it is crucial for the real-world usage scenario and when
working with large amounts of packet traces. In addition
extensibility is very important, in order to allow for quick
adjustments for different usage scenarios and experiments with
new features. Our tooling is completely open source to allow
the reproduction of our results and enable future research in
the area of network intrusion detection. For the experiments,
Netcap version v0.6.0 has been used.

To identify features of interest and encode them correctly,
we studied common techniques for feature engineering as
outlined by Zheng et al. [21] and applied them to our sce-
nario. Furthermore techniques for exploratory data analysis as
described by Collins [22] have been used to identify features
of interest.

The feature extractor is configurable and allows the features
to be generated either as raw values, or encoded as numerical
values for an [MI] algorithm to use. We implemented support
for structured labelling of all provided audit record types in
the Netcap core, so that the extracted data points can be used
for supervised training algorithms, that require ground truth
during the training phase.

A feature is a numeric representation of a raw data point,
and derives from the type of data that is available. The

number and quality of available features greatly impacts the
performance of a model: if there are not sufficient informative
features, the model will be unable to perform the predictive
task [21]. Feature Extraction should be parallelised to take
advantage of multi-core processors. Concurrency causes prob-
lems though, such as race conditions due to shared state among
workers. Ideally, observations from network communication
should be lightweight to calculate, but still expressive enough
to capture general network trends and the behaviour of indi-
vidual hosts. Our solution made use of bi-directional network
flow summaries, referred to as connection audit records in
our experiments. This requires keeping only minimal state,
and aggregates subflows, which compresses the amount of
generated events.

We chose a deliberately simple set of features for estab-
lishing a baseline. Additional features can always be added
later and their effect on prediction quality measured, as
the number of features and their complexity greatly affects
the performance of their collection. As a consequence, their
contribution to the detection task must be carefully evaluated
for each feature and different feature combinations. Included
information are timestamps, the total connection duration,
address information from the link and network layer, as
well as data transfer statistics, such as the number of bytes
transferred in each direction. In addition, we added counters
for the number of flags seen, as well as tracking of the
mean window size for each connection. For the entire
dataset, we yield 39,850,471 connection records, that have an
uncompressed size of 7./G in Comma Separated Values (CSV])
format. When compressed using zip, the data size is reduced
by 74% to 1.9G on disk.

E. Choice of Metrics

Accuracy is not a suitable metric when dealing with im-
balanced data, since the data imbalance will allow achieving
high scores without making any useful predictions. In order
to compensate for this and take the relevance of the different
error types into account, we use the F1 score to evaluate the
performance of the algorithms in our experiments. The F1
score is the harmonic mean of recall and precision. The preci-
sion metric measures how many selected elements are relevant,
whereas the recall metric measures how many relevant items
have been selected. The different error types are shown in

figure [T}

A true positive is the correct classification of an anomalous
sample, while a true negative is the correct classification of
a benign sample. A false positive refers to benign network
traffic that is incorrectly classified as an attack. Lastly, a false
negative is an attack that was not detected correctly by the
algorithm and was instead labelled benign.

True Positive False Positive

False Negative True Negative

Correct prediction

Incorrect prediction

Fig. 1: Confusion matrix

The recall is calculated by dividing the amount of true
positives by the amount of true positives and false negatives:

true positives

recall = — .
true positives + false negatives

The precision is calculated by dividing the amount of true
positives by the amount of true positives and false positives:

true positives

precision = — —
true positives + false positives

The harmonic mean is a well suited metric for analysing im-
balanced data sets, since it effectively penalises the algorithm
when either the precision or recall value is low [23].

recall x precision

F1 score =2 x —
recall + precision

For monitoring the performance of a neural network, a loss
function is used, which takes multiple metrics of the model
during operation, and produces a numeric value that describes
the performance of the model. The closer the result of the loss
function is to zero, the better the model is performing [24]]. In
order to avoid overfitting the model to the training dataset, we
use early stopping to stop the training phase once the model
no longer makes any notable improvements. To achieve this,
the delta between the two most recent loss values is checked
after each epoch. Once this delta drops below the commonly
used threshold for successful learning of 0.001, the training
phase is stopped, and the model that had the lowest loss at
the end of an epoch is selected from all trained versions of
the model.

F. Deep Neural Network Class Weight Calculation

To calculate the weights in order to adjust to the class
imbalance, the following recommended formula is used:

(1/samples_class) * (total /2.0)

Scaling the result by fotal / 2 is done to keep the loss
at a similar magnitude, while the sum of the weights of all
examples stays the same, as recommended by the Tensorflow
guide for classification on imbalanced datasets [25].

In our experiments, we observed that the class weights
calculated with this formula did not always to perform well,
and therefore started to experiment with different variations of
the class weight calculation. We found the most effective way

to influence the behaviour of the model towards the positive
class to manipulate it using a factor, the result for the negative
class is used unchanged. This way the focus on the positive
class can be tweaked, after creating a starting point using the
previous formula. Through manual experimentation with bi-
nary classification, we determined the best working factor to be
a rather small one, that is close to zero, effectively making the
model much less sensitive to the positive class. Our analysis
has shown that models trained using the recommended formula
suffered from over sensitivity towards the positive class. By
using a factor, we can either up- or downscale the final value
calculated for the positive class, by using a factor above 1, or
between 0 and 1.

(1/positive_class) * (total /2.0) * pos_factor

We observed the value of the share of the positive class in
percent to deliver best results when used as a factor, our tests
with tweaked class weights make use of this optimisation and
compare it against the effect of using the standard formula.
As an example, given a 1.7% share of the positive class in the
dataset, the factor used for the tweaked class weight calculated
would be 0.017, drastically reducing the weight for the positive
class.

G. Experiment Design

The experiments all operate on the CIC-IDS-2018 dataset
and can be divided into deep learning and machine learning
algorithms. Experiments using the and Kitsune au-
toencoder ensemble operate on the connection audit records
produced by the Netcap framework. The machine learning
experiments operate on the provided CIC-IDS-2018 flow data,
that contains over 80 statistical features for uni directional
network flows. All experiment code and logs are publicly
available to reproduce and independently verify our results
[26]. All used features, parameters and configuration values
are listed in appendix.

Experiment Design

CIC IDS 2018 Dataset

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Deep
Learning

—

NETCAP
Feature extraction

CIC Flow
Information

80 Features

Forests Boosting

Kitsune

Sequential
Dense Layers

n .

au s HE

ot P

Tensorflow P —

CUDA DNN HE
Isolation Gradient

Autoencoder
Ensemble

Fig. 2: Experiment design overview

VI. IMPLEMENTATION
A. Labelling

Labelling

@ read the attack descrip!
@ parse network traffic
@ label sach audit record

© r.]
™)

o e

Input PCAP

Label(auditRecord)

For each attack

- Timestamp within aftack fime range
- Record SrclP or DstlP is from aftacker
- Record SrclP or DstlP is from victim

%onnecﬁon.cs}

Labelled Data

Fig. 3: Labelling

Attack Descriptions

In order to provide label information for the use of super-
vised machine learning, attaching labels to the audit records
produced by the Netcap framework has been implemented.
To ensure to ensure the labelling logic works correctly we
implemented unit tests, and explicitly included edge cases such
as marking events that appear on the edge of an attack time
window. Labelling can be applied to any audit record type
from Netcap, that implements its central audit record interface.
The procedure of loading attack information from a YAML file
from disk, and applying it to the generated audit records from

the Netcap core for a single day of the dataset is shown in
Figure 3] In addition, we generate a plot for visual verification
of the assigned labels over the time period of the traffic capture
in a configurable interval, as shown in Figure [4]

Labels for Thursday-01-03-2018 @ Attack Normal

210,000
180,000
150,000
120,000
90,000
60,000

30,000

*2Q14
2018-03-01 2018-03-01T 2018-03-01T13:15:00-04:00 2018-03-01T15:45:00-04:00

Fig. 4: Thursday Labels

Our labelling logic allows to configure the exact attack
matching procedure, in order to avoid marking legitimate
victim background traffic as malicious, such as an OS update
check or mail traffic, that happens coincidentally during an
attack but is not related to it. By default, only traffic between
a victim and an attacker IP address within the time frame
of an attack will yield a label for the attack. This behaviour
can be changed if needed, to also label traffic between the
victim machine and other hosts as belonging to the attack, if
it happened in the time interval of an attack. We realised this
would be needed to mark the malicious activity on the victims
behalf after infection in the infiltration scenario, as the victim
machine is controlled via a reverse shell by the attacker, and
conducts further malicious activity such as network scanning
and the download of further malicious software. For scenarios
like denial of service or brute force attacks, labelling victim
traffic to other hosts than the attacker machines does not make
sense and is therefore disabled in our experiments.

B. Data Encoding

Categorical data like alphanumerical identifiers must be
transformed into numeric values, before they can be supplied
to an algorithm for analysis. Multiple approaches for encoding
categorical data exist, we will briefly discuss two common
encoding schemes that we considered for our experiments:

1) Enumeration

Each unique categorical value will be assigned a unique
numeric value, starting at zero and this index is incremented
sequentially for every new value that arrives. This way, the
only relation captured with enumeration strategy is the time
of first appearance of a value. A downside to this approach
is that all unique values must be held in memory for the
duration of the system operation. Purging old values might
cause unexpected behaviour and impair the efficiency of the
detection algorithm.

2) One Hot Encoding

A new column is added for every unique value of a feature
and set to one for each row of the data that has this value.

This means all possible values of a feature must be known a
priori, as the network will lack the required inputs otherwise.

We chose enumeration because it does not alter the feature
dimension. For one hot encoding all possible categorical values
for the column must be known in advance, so that the inputs
for the model can be created and the model trained on their
inputs. One hot encoding increases the dimensionality for the
dataset dynamically, since every unique value creates a new
column. Each model is created for a specific number of
features, the so called input shape. In order to work with data
points that did not exist during the training phase, the model
would need to be retrained, otherwise the new inputs would
need to be discarded for the model to work with the new data.
For this reason, we determined the enumeration approach to
be best suited for our specific use case, especially considering
the later deployment of a classification based network intrusion
detection system.

C. Data Normalisation

Numeric values must be normalised to reside within a
certain threshold, in order for the DNN to recognise them
best. We used the standard normal distribution (zscore), for
this purpose, because it is known to work well in this domain
[21]. An alternative to this is be the min max normalisation
strategy, which was also evaluated in our experiments.

VII. ALGORITHMS

A key consideration in unsupervised [ML for network intru-
sion detection is that anomalies are not drawn from a well-
defined probability distribution. Since this is an adversarial
setting, attackers can potentially try to defeat the distributional
assumptions the model makes.

Many [MIJ] algorithms assume that the entire dataset is
available for training. In the online paradigm, the data in
incrementally fed to the algorithm in a non-blocking way.
The downside of this approach is that statistics must be
calculated on the fly, whereas offline algorithms can operate
full knowledge of the dataset distribution.

Model Online Supervised Deep Learning
Deep Neural Network X

Auto Encoders X

Gradient Boosting X X
Isolation Forest X X X

Fig. 5: Model Comparison

A. Deep Neural Networks

For running the experiments we used Tensorflow, an
industry standard open source framework for machine learning
tasks, that offers support for multiple different computational
backends including GPUs, a built-in analysis and compu-
tational graph exploration frontend called Tensorboard and
support to run in a cluster with multiple nodes [27].

We chose a deliberately small network for the baseline
experiments, and experimented with different sizes to measure
the impact on detection performance.

The DNN experiments were executed on a GEFORCE RTX
3090. Processing six million connection audit records during
training and testing took approximately two seconds per epoch
with a batch size of 2048 connections and when best model
selection is disabled.

The should never be evaluated on data it has already
seen in the training phase. We therefore split the data into
a training and an evaluation batch, and experimented with
different ratios. The baseline experiments use 75% of the
dataset for training and 25% for testing. Based on the loss
calculated during the training phase, the training process will
stop once the development of the loss surpasses a certain
threshold. This is done in order to avoid overfitting the model,
and prevent yielding a biased model that performs extremely
well in the training dataset, but poorly when exposed to data
from a different source. When the training process has been
early stopped, the model with the lowest loss is selected for
the testing phase. A patience value of three epochs is set, to
avoid the training process from being stopped prematurely.

B. Isolation Forest

The intuition behind Isolation Forest relies on the idea that
anomalies are more susceptible to isolation under random
partitioning. To get the best results, it requires an explicit
contamination rate which is the ratio of malicious to normal
samples.

The algorithm picks multiple random features and for each
one of those, it plots the samples in a graph. To determine
the likelihood of a sample being an anomaly, the algorithm
makes random cuts in the graph. The higher the number of
cuts necessary to isolate a sample, the higher the likelihood
of that sample being an anomaly.

The model was run using the hyper-parameters specified in
the appendix. These were obtained by doing a 5-fold cross
validation over hundreds of various parameter combinations.
Note that we did not use an independent dataset for cross-
validation and therefore these parameters are optimal for our
dataset but may not be generalisable to other network intrusion
datasets.

Isolation Forest and other offline models are implemented
using Scikit Learn. The experiments with Isolation Forests and
Gradient Boosting were run on a dedicated server using an
AMD Ryzen 5, 6-core CPU operating at 3.6GHz.

C. Gradient Boosting

Gradient Boosting is an ensemble of decision trees that
iterates over the dataset while optimising a loss function. It
has been shown to perform very well for anomaly detection
in other domains e.g. the detection of credit card fraud [28].

D. Kitsune

This model is an ensemble of autoencoders which is trained
in an unsupervised manner [12]. The published implemen-
tation is in native Python which runs on a single-thread.

This is a notable limitation, as it was only able to process
1 million samples in 4 hours on the AMD Ryzen CPU and
the complexity did not scale in a linear fashion.

VIII. RESULTS

A. Dataset Processing

The processing rate measured during our experiments was
stagnating around 300,000 packets per second on a Ryzen
9 5950X 16 core processor, when processing packets read
directly from the packet capture files provided by the dataset
authors. An example of the measured throughput in packets
per second is plotted in Figure [6]

Average thr put in per O-pps

"\

400,000 -

300,000

~— — N
o

N~ ~

200,000 -

100,000

0
1021-07-30T14:55:31.376713739+02:00

2021-07-30T14:58:16.378229431402:00 2021-07-30T15:01:01.398295959+02:00

Fig. 6: Packet ingestion performance

To accelerate the processing with Netcap, we only loaded
the connection decoder and disabled the [TCP] stream reassem-
bly to improve the performance. Conversion to connection
audit records reduced the dataset file size drastically, for
example a 62G packet capture file with merged captures
for a single day, resulted in /.4G of uncompressed, labelled
connection audit records in [CSV] format. The entire dataset
consists of 436G of packet captures and is reduced to 7.1G of
data as uncompressed connection audit records from around
40 million bi-directional connections. We used a M.2 Samsung
970 Evo Plus solid state drive to achieve high throughput rates
for writing data to disk, as this often poses a bottleneck when
dealing with large amounts of data.

B. Shallow Learning

We evaluated Isolation Forest and Gradient Boosting using
the enriched network flow data and the connection audit
records since they contain 80 features versus 28 respectively.
Higher-dimensional data allows models like Gradient Boosting
to learn complex relations between these features and leads to
an increase in the detection rate as long as the features are
significant.

The used models are from the Scikit Learn Python library.
These implementations are not designed to train on large
amounts of data and we were therefore not able to run this
set of experiments on the entire dataset. Instead we ran the
models on individual days. This simplifies the learning task
for the models since they are exposed to a single attack type

during training and testing, with the exception of one day (Fri-
23-02-2018) that includes both the brute force and injection
attack types.

All offline model experiments were run on the dataset
without any address information to facilitate the comparison to
the results. The list of features and the model parameters
are available in the Appendix.

When splitting the individual days into train and test sets for
the offline models, it can happen that the testing split contains
only benign samples to classify, which would lead to a perfect
F1 score. In order to avoid this, the train/test split was done
after shuffling the dataset. For consistency, we made sure to
remove any features that contain time information, such as
timestamps.

1) Isolation Forest

In table [] we can see that Isolation Forest achieves a high
F1 score on a majority of days. It is apparent that on days
with a higher attack ratio, the F1 score drops. This is due
to Isolation Forest’s design, and this drawback is recognised
by the authors of the algorithm [6]. In practice this can be
alleviated by training on a dataset that contains few anomalies.

Overall, Isolation Forest performed extremely well given
the simplicity of the algorithm and was able to achieve an
F1 score of over 0.95 on most days. We find that it is a
strong contender for detecting Brute-force, and
Bot attacks. Additionally Isolation Forest has a linear time
complexity and a low constant memory requirement which
makes it viable for classifying large amounts of events.

Unlike Gradient Boosting, Isolation Forest is a simple
algorithm and we can see that it fails to detect complex
attacks such as the ones carried out on infiltration days. Indeed
days 28/02 and 01/03 have an F1 score of 0.77 and 0.56
respectively.

Although the model is unsupervised, it is not the best choice
be for a Intrusion Detection System (IDS)) since it is an offline
model. There exists an incrementally updating variant of the
algorithm known as Half-Space Trees [29] which may be a
reasonable choice for an IDS, and should be subject to future
experiments.

Looking at table we see that Isolation Forest has a
consistently high F1 score when run on connection audit
records. The F1 score is higher compared to the one from
the experiments on the enriched network flows for all days
except 20/02 and 02/03. This is an interesting result since
we would expect the model to perform worse given that the
connection audit record has fewer significant features than the
enriched network flow data. One possible explanation for this
is that the attack ratio for connection audit records is lower
then for network flows, making the anomalies easier to isolate.
Another complimentary reason is that the connection audit
record data was encoded using zscoring whereas the enriched
network flow data was fed into the algorithm without prior
encoding.

The day 20/02 contains a distributed denial of service attack
using the Low Orbit Ion Canon tool, and the day 02/03
had Botnet traffic. The enriched network flow data may have

Day 14/02 15/02 | 16/02 | 20/02 | 21/02 22/02 23/02 28/02 01/03 02/03
Attack Labels Brute-force | DoS DoS | DDoS | DDoS | Brute-force | Brute-force | Infiltration | Infiltration | Bot
Attack Ratio (%) 5.38 0.8 12.99 | 7.29 12.9 0.01 0.79 11.24 28.11 348
iForest (F1) 0.95 0.99 0.91 0.95 0.88 0.99 0.99 0.77 0.56 0.99
GBoost (F1) 1.0 0.99 0.99 0.99 0.99 0.99 0.99 0.68 0.79 0.99
GBoost * (F1) 0.94 0.99 0.87 0.93 0.87 0.99 0.99 0.89 0.72 0.96
TABLE I: Offline models run on enriched network flows without address information (* = pruning)
Day 14/02 15/02 | 16/02 | 20/02 | 21/02 22/02 23/02 28/02 01/03 02/03
Attack Labels Brute-force | DoS DoS | DDoS | DDoS | Brute-force | Brute-force | Infiltration | Infiltration | Bot
Attack Ratio (%) 0.48 - 0.59 4.61 2.74 0.000035 0.000048 1.06 2.1 1.6
iForest (F1) 0.99 - 0.98 0.91 0.95 0.99 0.99 0.97 0.96 0.96
GBoost (F1) 0.99 - 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99
GBoost * (F1) 0.99 - 0.99 0.95 0.97 0.99 0.99 0.99 0.98 0.98
TABLE II: Offline models run on connection audit records without address information (* = pruning)

Day 14/02 15/02 | 16/02 | 20/02 | 21/02 22/02 23/02 28/02 01/03 02/03
Attack Labels Brute-force | DoS DoS DDoS | DDoS | Brute-force | Brute-force | Infiltration | Infiltration | Bot
Attack Ratio (%) 0.0048 0.54 | 0.0059 | 0.046 | 0.027 0.000037 0.000049 0.011 0.21 0.016

F1 0.65 0.51 0.59 0.65 0 0.68 0.68 0.53 0.45 0.43

TABLE III: Kitsune run on the first 1 million lines of connection audit records using the address information

Day Labels Network Flow Connection Audit Records Flags
samples % malicious samples % malicious FIN RST

14/02 | Brute-force 7,083,083 5.38 1,351,639 0.48 41,836 1,273,384
15/02 DoS 6,617,761 0.8 458,568 0 41,480 1,144,304
16/02 DoS 8,520,652 12.99 2,389,314 0.59 41,017 1,457,712
20/02 DDoS 7,948,749 7.29 3,193,359 4.61 45,951 1,685,917
21/02 DDoS 9,603,223 12.99 5,380,173 2.74 46,840 2,607,408
22/02 | Brute-force 8,179,616 0.01 5,481,910 0.000035 51,418 1,850,717
23/02 | Brute-force 7,928,197 0.79 4,002,952 0.000048 52,119 1,741,312
28/02 | Infiltration 613,071 11.24 5,953,596 1.06 3,805 139,251
01/03 | Infiltration 331,101 28.11 5,961,260 2.1 1,951 65,904
02/03 Bot 8,217,203 11.24 5,732,010 1.6 38,574 2,308,407

TABLE IV: Attack Ratio for different dataset types

performed better on these days simply due to the additional
features, such as the DstPort and Protocol pair frequency.

2) Gradient Boosting

We used Gradient Boosted Decision Trees for binary classi-
fication. As seen in Table [I| it performed very well, achieving
an F1 score close to 1 on all days except the infiltration day
28/02. This is likely because the model is using the optimal
hyperparameters which were discovered during 5-fold cross
validation.

This indicates that the model is overfitting the dataset and
as a consequence might generalise poorly i.e. it may not
perform as well with real-world data. Luckily, we can tweak
the number of trees that are used in the ensemble, known
as the number of estimators. Another interesting parameter to
consider is the contribution that each new decision tree adds
to the overall classification decision, known as the learning

rate. Lowering the learning rate theoretically decreases the F1

score but increases generalisability. In addition to this, we can
also prune the decision trees to discard any leaf nodes that do
not meet a given cost complexity threshold. When enabled,

pruning mitigates overfitting, as seen in Table [I|

To further reduce training time and mitigate overfitting, this
model made use of early stopping. It should be noted that
Gradient Boosting is known to be fairly robust to overfitting
[30] since the decision trees that make up the ensemble are

short, with a depth of 2 or 3 in our experiments.

C. Deep Learning

The following section will present the results of our exper-

iments that made of deep learning algorithms.
1) Kitsune

The Python implementation of this ensemble of auto-

encoders would process around 250,000 samples per hour.

10

Given that most connection audit record collections for single
days in the dataset, contain around 5 million samples we can
estimate a 20 hour runtime per day. Our preliminary run on
the first 1 million lines of each file, in table |III, shows that
the model is performing poorly and we suspect this occurs
likely due to under-exposure to anomalies. Future experiments
should run the Kitsune experiments on the entire dataset, for
a fair comparison.

2) Deep Neural Network

The deep neural network created using Tensorflow per-
formed well in terms of training time due to running on the
GPU. This can be seen in the time column of the result tables.
The short processing times allowed for series of experiments to
be executed overnight and the results being ready for analysis
the next day. The results of training a model for each day
of the dataset are listed in Table The day 715/02 did not
contain any attacks in the provided packet captures, and could
therefore not be evaluated. The following observations are
made: for the days 22/02 and 23/02, detection of malicious
activity seemed not possible, due to the very low number
of malicious examples. Even the class weights were not
able to fix this heavy imbalance. Likely additional features
would be required on the connection audit records to make
a successful distinction in this case, or other techniques such
as oversampling should be considered to increase the amount
of malicious events. In general, there does not seem to be a
configuration in which all attacks are equally well detected.
For the brute force attacks on the /4/02, the best performing
configurations were using address information, but the absence
of address information did not seem to affect the models
prediction performance much. For the denial of service attack
day 16/02, we observe that both with and without address
information and tweaked class weights, an F1 score of 0.99 is
reached, the run with address information and dropout layer,
and the one with tweaked class weight even scored 1. The
pattern created by a denial of service attack seems to be
detectable with a very high certainty, even with the absence of
address information. The days with the distributed variant of
this attack, 20/02 and 21/02, do also deliver very high detection
rates. The two infiltration attack days 28/02 and 01/03 have a
quite similar detection rate across the different variants. The
scores seem generally high when using address information,
but do perform slightly worse in case no address information is
used. The botnet attack day on 02/03 delivered a minimum F1
score of 0.93 with address information, and a consistent F1
score of 0.79 without address information. We observe that
this model delivered several false positives, but does seem
to be able to detect the general pattern of botnet activity in
the majority of cases. The combination of ReLu activation
and MinMax normalisation delivered poor results across all
experiments, while the use of LeakyReLu activation and Zscore
normalisation delivered the best results.

The experiments on the entire dataset are displayed in Table
The highest F1 score of 0.95 is achieved when using
the address information, with absence of address information
the score drops to 0.87, which indicates the presence of

11

several false classifications, while still detecting the majority
of malicious connections. The class weights using the standard
procedure seem to lead to a drastic over prioritisation of the
attack class, and as a consequence yield bad scores due to
a high amount of false classifications. Our applied tweaking
seems to help there, both when using address information and
without it. Overall we observe that the absence of address
information affects the achieved score, but does not completely
prevent the algorithm from making useful predictions. This
is relevant in case knowledge transfer to a different network
topology is desired, for example when a vendor of security
software wants to train a model on a dataset and ship the
model to customers for deployment in network environments
that differ from the one used in the dataset. However, in
order to achieve the highest accuracy in detection rate and
the least false alarms, the use of address information should
be considered, even when this requires training the model with
a dataset recorded in the target network.

Results for the experiments with multi-class classification
are shown in Table In the confusion matrix in figure
we can see that even without using address information
predictions include 4 of 6 classes in the dataset (normal,
denial-of-service, infiltration and botnet), which is a similar
result compared to the variant with address information. The
training phase metrics for the run with address information are
displayed in figure[§] Two classes, bruteforce and injection, are
heavily underrepresented in the testing split, as they appear
only between 4-1751 times in the dataset with around 40
million connections, which is likely the reason these are never
detected successfully. Overall the detection performance still
seems very high when using multiple classes.

The batch size is the number of samples that will be
propagated through the neural network. The estimate of the
gradient will be less accurate, the smaller the value is that was
chosen for the batch size. In the experiments for determining
the optimal batch size, we observed the configuration with
1024 samples per batch to be performing the best. Our baseline
experiments have been executed using a batch size of 2048.
We also observed that the batch size has a big impact on
computational performance, with larger batch sizes processing
much faster, ranging from around 30 seconds per epoch on the
entire dataset with a value of 2048, and up to 30 minutes per
epoch when letting Tensorflow set this value for us and setting
it to a very small number of samples (4-16).

Overall, the predictions gave useful results, in case
sufficient instances of the attack class were available during
training. However, there was no model that was entirely free
of false positives or false negatives, and thus we conclude that
this method still requires human supervision and manual alert
analysis, and is not suited for automated action at this moment.
Further feature additions to the connection audit records could
help to solve this problem, as well as further alert enrichment
and post processing, before presenting the alert to an analyst.

Day 14/02 15/02 | 16/02 | 20/02 | 21/02 22/02 23/02 28/02 01/03 02/03
Attack Labels Brute-force | DoS DoS | DDoS | DDoS | Brute-force | Brute-force | Infiltration | Infiltration | Bot
Attack Ratio (%) 0.48 - 0.59 4.61 2.74 0.000035 0.000048 1.06 2.1 1.6
A (F1) 0.99 - 0.99 0 0.94 0 0 0.97 0.96 0.93
A + CW (F1) 0 - 0.99 0.94 0.94 0 0 0.87 0.88 0.90
A + TCW (F1) 0.99 - 1 0.94 0.94 0 0 0.97 0.97 0.94
A + DL (F1) 0.98 - 1 0 0.94 0 0 0.96 0.95 0.93
A + RM (F1) 0 - 0 0 0 0 0 0 0 0.79
NA (F1) 0.97 - 0.99 0.94 0.94 0 0 0 0.81 0.79
NA + CW (F1) 0 - 0.99 0.94 0.94 0 0 0.64 0.60 0.79
NA + TCW (F1) 0.98 - 0.99 0.94 0.94 0 0 0.83 0.80 0.79
NA + DL (F1) 0.97 - 0.99 0.94 0.94 0 0 0.83 0 0.79
NA + RM (F1) 0 - 0 0 0.93 0 0 0 0 0

TABLE V: [DNN] on single days, binary classification for classes normal and attack, A=Addresses used, NA=No Addresses
used, CW=Class Weights, TCW=Tweaked Class Weights, ’-’ indicates that there were no attacks in the provided packet captures

Variation F1 | Time (s) | Epochs | False Positives | False Negatives
A 0 685 4 0 170143
A+ CW 0.86 803 5 49392 2215
A+ TCW | 0.95 941 6 11480 5531
A + DL 0 692 4 0 169952
A + RM 0 799 4 0 169771
NA 0.86 782 5 23668 21367
NA + CW | 0.55 648 4 254431 5008
NA + TCW | 0.87 1025 7 27018 18269
NA + DL | 0.87 1018 7 23851 20086
NA + RM 0 736 4 0 169750

TABLE VI: DNN on entire dataset, binary classification for classes normal and attack, dnn size: 16 - 32 - 16, batch size
1024, A=Addresses used, NA=No Addresses used, CW=Class Weights, TCW=Tweaked Class Weights, DL=Dropout layer

used, RM=ReLu activation and MinMax normalisation used

Variation | F1 | Time (s) | Epochs | False Positives | False Negatives
A 0.95 741 5 8097 6
A+ CW | 056 996 7 95189 8513
A +DL | 0% 748 5 8318 6
A + RM 0 776 4 0 77456
NA 0.94 1172 9 8378 11
NA + CW | 091 952 7 13644 4
NA + DL | 0.94 721 5 8443 7
NA+RM | 0 690 4 0 77351

TABLE VII: DNN multi-class classification experiments on entire dataset, dnn size: 16 - 32 - 16, batch size 1024, classes:
normal, denial-of-service, bruteforce, injection, infiltration and botnet, A=Addresses used, NA=No Addresses used, CW=Class
Weights, DL=Dropout layer used, RM=ReLu activation and MinMax normalisation used

IX. DISCUSSION
A. Limitations

When evaluating the performance of an algorithm on a
dataset, the structure of the dataset has to be taken into
account. In this case, individual attack classes are isolated
on a single day, which helps to observe the efficiency of an
algorithm for detecting a specific attack class. This might lead
to a model performing badly when multiple different attacks

appear simultaneously, because it expects them to occur only
in isolation, as seen previously in the training data.

The audit record type that was chosen is in theory time-
independent, and a single connection can be moved around
the time axis. However, there are situations where multiple
connections are associated to a malicious action, and their
order could be used as an additional indicator. The current
implementation does not make use of this, as the data points
are shuffled before being fed to the classifier, which helps to

12

Confusion matrix @0.50 1e6

3116 11783

Actual label

21233 190

46723

Predicted label

Fig. 7: Confusion matrix for multi-class classification on entire
dataset without address information, labels: O: normal, 1:
denial-of-service, 2: bruteforce, 3: injection, 4: infiltration, 5:
botnet

— Tain
- val

0035

0030

0025{
0.020
0015
0010
0.005

0.000

Fig. 8: Training metrics for multi-class classification on entire
dataset without address information

create an equal distribution of normal and benign connections
in the training and testing split. As long as this is applied both
in the experiment setup and in production, we expect similar
results.

In addition, the use of time information could lead to
unexpected behaviour, for example when a model associates
Wednesdays with denial of service attacks, because in the
training dataset those attacks only occurred on this day. The
same could happen for a specific time of the day, or other
attributes. Those hidden correlations could cause unintended
bias for the model and could degrade prediction performance.
The in the sequential dense layer configuration discards

13

all time related information, but for future work with Long
Short Term Memory (LSTM) layers such side effects must be
considered. When using other audit record types, for example
those for [TCPl packets, more care has to be given here because
the order of packets matters for the correct interpretation, due
to the stateful nature of the underlying protocol. A further
problem is the delay due to batch processing: the batch size
(e.g: 1024 connections) creates a delay in the generated alerts,
which could be exploited by an attacker during periods when
there is not much network traffic.

The impact of concept drift, which is the change of statisti-
cal properties of the testing data [31] must be further assessed
for the connection audit records as well. As a consequence
of concept drift, the performance of the classifier is expected
to decrease over time. Retraining the model will be required
in a regular interval in case the environment is non stationary
[32]. This greatly depends on the target environment: while
industrial systems are generally more stationary and change
less often, corporate network where employees can bring their
own devices change patterns frequently. We applied shuffling
to prevent spatial bias and enforce a similar distribution of the
positive and negative classes, and chose the connection audit
record abstraction, because it can be moved on the time axis in
order to prevent time bias. In addition, the deep neural network
discards all time information. When choosing a classifier for
a target environment, it should therefore be evaluated if the
stability of the classifier over time is more important than its
detection performance.

B. Visualisation

Data gathered from network connections is very abstract
machine data, and in order to make it understandable to a
human analyst, different types of visualisation are commonly
used nowadays.

To make the dataset exploration more visual and interactive,
we used the industry standard elasticsearch and kibana stack
to visualise the collected data as charts and data plots. Future
versions could also use this platform for tracking of generated
alerts. In addition, graphical link based analysis with the Mal-
tego software suite was performed, to gather insight into the
characteristics of the attacks, as well as to perform exploratory
data analysis.

C. Alerting

As the number of connections related to an attack can vary
from a dozen to several thousand ones, we identified alert
debouncing and denoising as two important aspects. With
debouncing, we refer to the reduction of the number of alerts
produced, for example by grouping alerts based on the affected
hosts, or fetching alert summaries in a regular interval, instead
of using a real-time feed. With denoising, we refer to the
reduction of noise caused by alerts considered non-important.
Filtering or scoring mechanisms could be applied in order to
decrease the number of alerts presented to an analyst, or a
voting based ensemble model could be used to discard events
without a sufficient number of votes. In general, great care

has to be taken for the delivery of alerts to an analyst. Too
many false positives will cause alert fatique, meaning that the
analyst will start to ignore alarms because he suspects them to
be incorrect. This is of course dangerous and unwanted, and
as such advanced network intrusion detection solutions should
further process generated alerts to ensure they are indeed worth
notifying an analyst.

X. CONCLUSION

Even in absence of computationally expensive generated
features from the connection audit records, as well in absence
of address information features, solid detection rates have been
achieved in the experiments. For this, basic features about
the volume of transferred data, destination port information as
well as protocol names of each involved layer have been used,
to construct summary structures that can express behavioural
patterns on the network, while having a relatively small
footprint on disk and in memory. Adding the [TCP specific
flag counters to the connection audit records further improved
the detection performance. Regarding packet processing and
audit record generation on commodity hardware, throughput
rates of around 300,000 packets have been measured in our
experiments. The generated data as connection audit records
requires less storage space (7.1G) compared to the provided
network flow data (31G) and compresses extremely well, with
over 70% possible size reduction. The evaluated algorithms
that delivered the best classification performance in our exper-
iments are Gradient Boosting and the Deep Neural Network
with sequential dense layers. The best performance in regard
to training speed was the due to execution on a GPU.
Evaluation of the Kitsune framework has been limited due to
time constraints, and should therefore be repeated on the entire
available data.

Use of a Graphical Processing Unit for accelerating
machine learning operations and parallelisation to increase per-
formance of the feature extraction, are essential for processing
large amounts of data. Common tooling in the data science and
packet processing area is unfortunately often single threaded
and as a consequence unsuited for processing such large scale
datasets.

Overfitting of certain models can be mitigated to make them
generalisable, for example the removal of address information
demonstrated in our experiments, and the use of discussed
techniques like early stopping. The experiments indi-
cated that knowledge transfer to another network topology
seems possible, as the detection results are still high even when
removing address information. The Gradient Boosting exper-
iments have shown that models are still prone to overfitting
without address information and when using early stopping
and therefore must be evaluated on real-world data in future
research. Efficiency in detecting attacks is highly affected by
the imbalanced nature of the data. Some days might contain no
malicious actions at all, while others may feature attack types
like denial of service that in some cases drastically change the
ratio of the negative and positive classes. The used algorithms
expect a similar distribution of the positive to the negative

14

class in the training and testing dataset. This is a potential
problem, since this ratio can be influenced by an attacker.
Ideally, features should be used that are hard to manipulate
by an attacker. The bias impaired on the model due to this
data distribution assumption, and the implications for the use
of such algorithms for network security monitoring, need to
be further explored. Shallow and deep learning algorithms
also suffer from performance decay over time, due to concept
drifting or the introduction of new attack variations that require
retraining the model or the addition of new features. This has
to be considered for the deployment of such systems.

A challenge for the automated analysis of network traffic
besides performance limitations is the fact that not every
anomaly is malicious, as in many cases anomalies are caused
by equipment malfunction or misconfigurations, rather than
by an attacker. Inversely not every malicious connection is
anomalous. Attackers can try to attack the distributional as-
sumptions made by machine learning models, much in the
same way attackers obfuscate known attacks by modifying
their signatures to bypass signature-based systems. Further-
more, attackers can model normal network behaviour that was
observed with passive network sniffing, to avoid detection and
blend in with what is known to be normal traffic.

Address information might not be required or not desired
for the algorithm that makes the decision, but is still very
important information for the analyst. The online algorithm we
tested performed generally poorly, both in regard to detection
efficiency and performance of the provided implementation.
Lastly, we would like to reason about the need to detect every
attack for uncovering network intrusions, and the impact of
false alarms on the perception and behaviour of an analyst.
False alarms will cause the analyst to ignore events if they
occur frequently, which is undesirable for the operation of
security monitoring, as it decreases overall system efficiency.
In order to detect an ongoing incident, a single alarm that
identified a component of the attack chain might be enough,
to have forensic experts follow up on the alert and discover
the breach. Overall, the detection performance observed in the
experiments was very high, and would certainly provide value
to a threat analyst, even if human intervention for the alert
analysis is required. The key goal for a network intrusion
detection system is to reduce the workload imposed on human
analysts due to manual artifact analysis, especially when
dealing with huge amounts of data. We see great potential
for the application of the analysed algorithms, and plan to
asses their performance in future deployments on real-world
data. Machine learning and deep learning is not subject to
human bias, but extremely sensitive to the data it was trained
on. As such, data pollution by an attacker remains a serious
threat for the effectiveness of such systems. The limitations
imposed by the lack of explainability for some algorithms,
can be reduced by enriching alerts with additional information
about the affected systems, to help an analyst to make a quick
but well informed decision. Regarding the choice of algorithm
for the detection task, we conclude that each algorithm delivers
a different detection performance for different attack types,

and as a consequence must be chosen with care. If possible,
a simpler algorithm that requires less computational resources
should be preferred for the detection of attacks with significant
statistical properties, such as denial of service or brute force
attacks, instead of using a complex algorithm like a deep
neural network.

XI. FUTURE WORK

Future research includes completing the alert pipeline and
exploring alert analysis in Maltego / Elastic. In addition,
further research and more experiments with unsupervised
algorithms should be conducted, as those would be better
suited for the deployment requirements of nowadays network
infrastructure.

Feature collection could also make use of the Extended
Berkeley Packet Filter (eBPH) provided by the Linux kernel,
in order to ease the computational pressure on the intrusion
detection system imposed due to packet processing and im-
prove performance. Indeed it has been shown that a flow
based network intrusion detection system can be implemented
entirely in[eBPH resulting in a 20% performance increase over
user-space programs [33]].

After identifying algorithms that show promising results
for a particular attack type, combining them in an ensemble
fashion to compensate the weaknesses of individual models
should be considered, as an ensemble is superior to individual
approaches [11]]. Ensemble methods can also help to scale for
large datasets [2].

Feature engineering could make use of address information
or subnets to define certain trust or network groups, so that
address information can be used for classification, but is not
bound to specific addresses and can be configured prior to
deployment. Such groups could include internal or external
hosts, administrator, user or guest user Internet Protocol (IP)
addresses, or internal services, based on their relevance.

Further feature engineering could increase the likelihood
of detecting anomalous behaviour for a sample, for example
by using generic indicators for the creation of new features,
such as: if a connection is made from a workstation outside
office hours, if the connection is towards a blacklisted country,
or if large volumes of data are leaving the internal network,
for example during data exfiltration. Extracted features could
also include hashes that identify the initiators and providers
of encrypted communications, such as the TLS client and
server fingerprints (Ja3) and SSH client and server fingerprints
mechanisms developed by salesforce. Also the use
of non standard port numbers for web services or the use of
Secure Hypertext Transfer Protocol (HTTP) requests towards
an [[Pladdress instead of a host name could be used as a trigger
to raise an alert. Deep packet inspection could be used for
further feature enrichment and also assist in the creation of
generic detection rules, for example consider checking whether
the actual file content type matches the advertised one, or
checking if an Uniform Resource Locator (URL) parameter
contains shell commands using a regular expression.

15

Using different layer types for the deep neural network,
that can make sense of time should also be considered. As
concurrent processing can potentially result in output being
generated in a randomised order, further experiments should
assess the impact of this on the quality of the detection
accuracy. Furthermore, optimizers other than the used adam al-
gorithm should be evaluated and their performance compared.
The monitored value to determine the point for early stopping
could also be changed, for example to using the precision-
recall curve instead of the loss value used in our experiments.
Furthermore, future experiments should asses an acceptable
loss value for the scenario and determine if our chosen value
is optimal or could be improved.

Alerts should be emitted in an industry standard format,
such as the Malware Information Sharing Platform or
Structured Threat Information eXpression (STIX]) standards, in
order to enable sharing indicators of compromise with external
systems [22]].

The Kitsune ensemble of autoencoders and the decision
trees could also be implemented via Tensorflow to increase
sample throughput. Also different audit record types should
be evaluated in isolation or in combination with connection
audit records, including but not limited to HTTP, [CMPI
and Secure Shell Protocol (SSH) records.

Apart from evaluation on datasets, a case study with real-
world traffic could also deliver valuable insights, especially
regarding deployment challenges and performance of the so-
lution over time under the influence of concept drift. The
experiments could be extended with using [LSTM] layers,
to observe the impact of time as an additional factor. This
would allow for the use of packet based audit records, such
as those for as the order here is crucial for the correct
interpretation. To combat the heavy class imbalance for some
attack types, also oversampling could be considered. For
encoding categoricals, learned embedding could be applied
in order to compare the results to the enumeration based
approach. Furthermore it would be interesting to see how the
detection performance changes when using one-hot encoding.
The Keras functions evaluate, predict and fit for training
and evaluating the models have parameters for parallel pro-
cessing, namely workers and use_multiprocessing. Possible
performance improvements with these configuration options
should be explored in future experiments. The code used to run
the experiments should be extended to use K-fold cross
validation, to ensure the results are not impacted by an uneven
distribution in the class ratio of the positive and negative
classes for the train and test dataset splits, and the final result
score is averaged over multiple runs. We note however that
due to applying shuffling and measuring the distribution of
classes, we ensured that the ratio is equal in our experiments,
and have observed consecutive runs of the same experiment
to produce similar results. To allow for incremental updates
of the the Keras batch training API should be used for
future versions.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

REFERENCES

Mahendiran, A., Appusamy, R., and S, K. “Intrusion
Detection and Prevention System: Tchnologies and
Challenges”. In: International Journal of Applied En-
gineering Research 10 (Jan. 2015), pp. 1-12.

Bhattacharyya, D. K. and Kalita, J. K. Network Anomaly
Detection: A Machine Learning Perspective. Chapman
amp; Hall/CRC, 2013. 1SBN: 1466582081.

Veeramachaneni, K. et al. “Al” 2: training a big data
machine to defend”. In: 2016 IEEE 2nd International
Conference on Big Data Security on Cloud (BigDataSe-
curity), IEEE International Conference on High Perfor-
mance and Smart Computing (HPSC), and IEEE Inter-
national Conference on Intelligent Data and Security
(IDS). IEEE. 2016, pp. 49-54.

Lazarevic, A. et al. “A Comparative Study of Anomaly
Detection Schemes in Network Intrusion Detection”. In:
vol. 3. May 2003. pot: 10.1137/1.9781611972733.3|

Emmott, A. F. et al. “Systematic construction of
anomaly detection benchmarks from real data”. In:
Proceedings of the ACM SIGKDD workshop on outlier
detection and description. 2013, pp. 16-21.

Liu, F. T, Ting, K. M., and Zhou, Z.-H. “Isolation
forest”. In: 2008 eighth ieee international conference
on data mining. IEEE. 2008, pp. 413-422.

Naseer, S. et al. “Enhanced network anomaly detection
based on deep neural networks”. In: IEEE access 6
(2018), pp. 48231-48246.

Hendrycks, D., Mazeika, M., and Dietterich, T. “Deep
anomaly detection with outlier exposure”. In: arXiv
preprint arXiv:1812.04606 (2018).

Amarasinghe, K., Kenney, K., and Manic, M. “To-
ward explainable deep neural network based anomaly
detection”. In: 2018 11th International Conference on
Human System Interaction (HSI). IEEE. 2018, pp. 311-
317.

Nguyen, A., Yosinski, J., and Clune, J. “Deep neural
networks are easily fooled: High confidence predic-
tions for unrecognizable images”. In: Proceedings of
the IEEE conference on computer vision and pattern
recognition. 2015, pp. 427-436.

Mukkamala, S., Sung, A. H., and Abraham, A. “In-
trusion detection using an ensemble of intelligent
paradigms”. In: Journal of network and computer ap-
plications 28.2 (2005), pp. 167-182.

16

Mirsky, Y. et al. “Kitsune: An ensemble of autoencoders
for online network intrusion detection. arXiv 2018”. In:
arXiv preprint arXiv:1802.09089 ().

Sharafaldin, I., Lashkari, A. H., and Ghorbani, A. A.
“Toward generating a new intrusion detection dataset
and intrusion traffic characterization.” In: ICISSp. 2018,
pp. 108-116.

Richard, B. The Practice of Network Security Monitor-
ing - Understanding Incident Detection and Response.
No Starch Press, July 2013. 1SBN: 978-1-59327-509-9.

Michael W., L. Network Flow Analysis. No Starch
Press, June 2010. 1SBN: 978-1-59327-203-6.

Stephen, N. and Judy, N. Network Intrusion Detection,
Third Edition. New Riders Publishing, August 28, 2002.
ISBN: 0-73571-265-4.

Gu, J. “An Effective Intrusion Detection Model Based
on Pls-Logistic Regression with Feature Augmenta-
tion”. In: Jan. 2020, pp. 133-140. 1SBN: 978-981-33-
4921-6. DOI: [10.1007/978-981-33-4922-3_10.

Chris, M. Network Security Assessment, 3rd Edi-
tion. O’Reilly Media, Inc., December 2016. ISBN:
9781491910955.

James, F. Attacking Network Protocols - A Hacker’s
Guide to Capture, Analysis, and Exploitation. No Starch
Press, December 2017. 1SBN: 9781593277505.

Mieden, P. NETCAP - A framework for secure and
scalable network traffic analysis. 2021. URL: https://
github.com/dreadlOck/netcap.

Zheng, A. and Casari, A. Feature Engineering for
Machine Learning: Principles and Techniques for Data
Scientists. 1st. O’Reilly Media, Inc., 2018. ISBN:
1491953241.

Collins, M. Network Security Through Data Analysis,
2nd Edition. O’Reilly Media, Inc., September 2017.
ISBN: 9781491962848.

Sateesh, S. Have you asked why F1-Score is a Harmonic
Mean(HM) of Precision and Recall. 2018. URL: https:
//medium.com/@srinivas.sateesh/have-you-asked-why-
f1-score-1is-a- harmonic- mean-hm- of - precision-and-
recall-febc233ce247.

Brownlee, J. Loss and Loss Functions for Training
Deep Learning Neural Networks. 2019. URL: https://
machinelearningmastery.com/loss- and- loss- functions-
for-training-deep- learning-neural-networks/,

https://doi.org/10.1137/1.9781611972733.3
https://doi.org/10.1007/978-981-33-4922-3_10
https://github.com/dreadl0ck/netcap
https://github.com/dreadl0ck/netcap
https://medium.com/@srinivas.sateesh/have-you-asked-why-f1-score-is-a-harmonic-mean-hm-of-precision-and-recall-febc233ce247
https://medium.com/@srinivas.sateesh/have-you-asked-why-f1-score-is-a-harmonic-mean-hm-of-precision-and-recall-febc233ce247
https://medium.com/@srinivas.sateesh/have-you-asked-why-f1-score-is-a-harmonic-mean-hm-of-precision-and-recall-febc233ce247
https://medium.com/@srinivas.sateesh/have-you-asked-why-f1-score-is-a-harmonic-mean-hm-of-precision-and-recall-febc233ce247
https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

Classification on imbalanced data. 2021. URL: https:
/ [www . tensorflow . org / tutorials / structured _ data /
imbalanced_data.

Mieden, P. and Partarrieu, P. Masterthesis experiment
code and logs. 2021. URL: https://github.com/dreadlOck/
masterthesis.

Tom, H., Yehezkel S., R., and Itay, L. Learning Ten-
sorFlow. O’Reilly Media, Inc., August 2017. ISBN:
9781491978511.

Psychoula, I. et al. “Explainable Machine Learning for
Fraud Detection”. In: arXiv preprint arXiv:2105.06314
(2021).

Tan, S. C, Ting, K. M., and Liu, T. F. “Fast anomaly
detection for streaming data”. In: Twenty-Second In-
ternational Joint Conference on Artificial Intelligence.
2011.

URL: https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.GradientBoostingClassifier.htmll

Cavallaro, L. “When the Magic Wears Off: Flaws in ML
for Security Evaluations (and What to Do about It)”. In:
Burlingame, CA: USENIX Association, Jan. 2019.

Jordaney, R. et al. “Transcend: Detecting Concept Drift
in Malware Classification Models”. In: 26th USENIX
Security Symposium (USENIX Security 17). Vancouver,
BC: USENIX Association, Aug. 2017, pp. 625-642.
ISBN: 978-1-931971-40-9. URL: https://www.usenix.
org / conference / usenixsecurity 17 / technical - sessions /
presentation/jordaney.

Bachl, M., Fabini, J., and Zseby, T. “A flow-based IDS
using Machine Learning in eBPF”. In: arXiv preprint
arXiv:2102.09980 (2021).

17

https://www.tensorflow.org/tutorials/structured_data/imbalanced_data
https://www.tensorflow.org/tutorials/structured_data/imbalanced_data
https://www.tensorflow.org/tutorials/structured_data/imbalanced_data
https://github.com/dreadl0ck/masterthesis
https://github.com/dreadl0ck/masterthesis
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney

APPENDIX
A. Model Parameters

To allow for reproduction of our results, the following
section lists the parameters for the various algorithms we
have tested.

Isolation Forest was run with 80 estimators, meaning that
the forest was made of 80 trees. The contamination rate was
set for every individual file since this model is offline and the
dataset is known a priori, but the model performed equally
as well when the proportion of outliers was determined as in
the original paper.

Gradient Boosting was configured differently for network
flow data and audit records since decision tree can overfit on
dataset with lots of features but few samples. For enriched
network flow data we used a learning rate of 0.05, in
combination with using the Friedman Mean Squared Error
function to measure the quality of a split. The maximum
depth of the trees was 3. We used +/n_features which
results in 9 features for the network flow data. For audit
records, gradient boosting was configured to use a learning
rate of 0.01, a max tree depth of 2, and a single estimator. For
experiments where pruning is enabled, we set the alpha cost
complexity to 0.005 such that the subtree with the largest cost
complexity smaller then alpha was selected. For all data types,
early stopping was configured such that the training would
cease if the loss decreased by less then 10~3. We set aside
0.1% of the training data as a validation set for early stopping.

Kitsune’s feature mapper was trained on the first 10k
samples and the anomaly detector was trained on the next
10k samples. The resulting 80k samples are be used for
evaluation. Notice how this model uses 80% of the dataset
for evaluation rather than the usual 20 or 25%.

The Deep Neural Network used was created with Keras
and Tensorflow, and executed using libcudnn on a GEFORCE
RTX 3090 GPU. The baseline model consists of two fully
connected (dense) wrap layers with 16 neurons, 16 core layers
with 32 neurons, followed by two additional wrap layers with
16 neurons and a final output layer with one neuron per class.
We utilised sequential, fully connected (dense) layers. For
the experiments with binary classification, we chose the bi-
nary_crossentropy loss function in combination with a sigmoid
activation function on the output layer. Multi-class classifica-
tion made use of the lossfunction categorical_crossentropy and
the softmax activation. We made use of the adam optimizer,
and the LeakyReLu activation function with an alpha of 0.3
for all layers except the output layer. When using the relu
activation function, it is used in combination with minmax
normalisation. The experiments with dropout layers used a
dropout rate of 0.3. The kernel_initializer used was always
set to 'normal’ for all layers. The batch size for feeding data
to the model was set to 2048.

18

B. Enriched Network Flow Features

The following features are provided by the enriched network
flow data from the CIC dataset authors. We have added the
DstPort-Protocol Pair Frequency feature.

Dst Port
Protocol
DstPort-Protocol Pair Frequency
Flow Duration
Tot Fwd Pkts

Tot Bwd Pkts
TotLen Fwd Pkts
TotLen Bwd Pkts
Fwd Pkt Len Max
Fwd Pkt Len Min
Fwd Pkt Len Mean
Fwd Pkt Len Std
Bwd Pkt Len Max
Bwd Pkt Len Min
Bwd Pkt Len Mean
Bwd Pkt Len Std
Flow IAT Mean
Fwd PSH Flags
Flow IAT Std
Flow IAT Max
Flow IAT Min

Bwd IAT Mean

Fwd IAT Mean

Fwd IAT Tot

Flow Byts/s

Flow Pkts/s

Fwd IAT Std

Fwd IAT Max

Fwd IAT Min

Bwd IAT Tot

Bwd IAT Std

Bwd IAT Max

Bwd IAT Min

Fwd Header Len
Bwd Header Len
Fwd Pkts/s

Bwd Pkts/s

Pkt Len Min

Pkt Len Max

Pkt Len Std

Pkt Len Var

Pkt Len Mean

RST Flag Cnt

FIN Flag Cnt

SYN Flag Cnt

PSH Flag Cnt

ACK Flag Cnt

URG Flag Cnt

Bwd PSH Flags
Fwd URG Flags
Bwd URG Flags
CWE Flag Count
ECE Flag Cnt
Down/Up Ratio
Pkt Size Avg

Fwd Seg Size Avg
Bwd Seg Size Avg
Fwd Byts/b Avg
Fwd Pkts/b Avg
Fwd Blk Rate Avg
Bwd Byts/b Avg
Bwd Pkts/b Avg
Bwd Blk Rate Avg
Subflow Fwd Pkts
Subflow Fwd Byts
Subflow Bwd Pkts
Subflow Bwd Byts
Init Fwd Win Byts

Init Bwd Win Byts
Fwd Act Data Pkts
Fwd Seg Size Min
Active Mean
Active Std

Active Max

Active Min

Idle Mean

Idle std

Idle Max

Idle Min

C. Connection Audit Record Features

The following features are provided by the Netcap connec-
tion audit records:

TimestampFirst
LinkProto
NetworkProto
TransportProto
ApplicationProto
SrcMAC

DstMAC

SrcIP

SrcPort

DstIP

DstPort
TotalSize
AppPayloadSize
NumPackets
Duration
TimestampLast
BytesClientToServer
BytesServerToClient
NumFINFlags
NumRSTFlags
NumACKFlags
NumSYNFlags
NumURGF lags
NumECEFlags
NumPSHFlags
NumCWRFlags
NumNSFlags
MeanWindowSize

List of Acronyms

ML]Machine Learning|
[Denial of Servicel

DDoS] Distributed Denial of Service]
[DNN__]Deep Neural Network]
[COF] [Cocal Outlier Factor
SVM | [Support Vector Machine]
[GMM 1 [Gaussian Mixture Modell
EGMM______[lEnsemble Gaussian Mixture Modell
IIIQS ||Intrus1on Detectlon System|
II‘QI M ||l :ong Short Term Memory

[TLS | [Transport Layer Securit
IICM:I nternet Control Message Protoco

S 1[Domain Name Servicel
|,| | [TLS client and server fingerprints|
HASSH | [SSH client and server fingerprints|

SSH |[Secure Shell Protocoll
HTTP | |ISecure Hypertext Transfer Protocol|

19

[HTTPS __ 1[Secure Hypertext Transfer Protocol

MISP_____ | [Malware Information Sharing Platfo
STIX | [Structured Threat Information eXpression]
AWS | [Amazon Web Services

MP_—_] [nternet Protocoll

[URL_______ | [Uniform Resource Locator
[eBPF_______|[Extended Berkeley Packet Filter]

ROCAUC Compute Area Under the Receiver Operating
Characteristic Curve

ICSY | [Comma Separated Values|

GPU | [Graphical Processing Unif

	Introduction
	Background & Related Work
	Network Intrusion Detection Systems
	Outlier Detection Algorithms
	Deep Learning
	Datasets

	Problem and Research Gap
	Research Question
	Methodology
	Dataset
	Dataset Limitations
	Incomplete Network Flow Data
	Non Reproducible Labelling
	Incomplete Packet Captures
	Absence of Normal Days
	Dataset Imbalance

	Dataset Exploration
	Botnet Activity
	Infiltration
	Bruteforce
	Denial of Service
	Injection

	Feature Extraction
	Choice of Metrics
	Deep Neural Network Class Weight Calculation
	Experiment Design

	Implementation
	Labelling
	Data Encoding
	Enumeration
	One Hot Encoding

	Data Normalisation

	Algorithms
	Deep Neural Networks
	Isolation Forest
	Gradient Boosting
	Kitsune

	Results
	Dataset Processing
	Shallow Learning
	Isolation Forest
	Gradient Boosting

	Deep Learning
	Kitsune
	Deep Neural Network

	Discussion
	Limitations
	Visualisation
	Alerting

	Conclusion
	Future Work
	Appendix
	Model Parameters
	Enriched Network Flow Features
	Connection Audit Record Features

